Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"~
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet~
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New ~
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366~
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666~
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163~
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321~
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488~
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,~
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",~
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti~
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000, ~
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000, ~
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3640~
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3390~
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000, ~
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, ~
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2~
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, ~
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dru~
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos select
(in this order): ticker
, year
, grossmargin
Extract observations for 2018
Assign output to drug_subset
For health_cos
select (in this order): ticker
, year
, revenue
, gp
, industry
Extract observations for 2018
Assign output to health_subset
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5825000000 3914000000 Drug Manufacturer~
2 PRGO 2018 0.387 4731700000 1831500000 Drug Manufacturer~
3 PFE 2018 0.79 53647000000 42399000000 Drug Manufacturer~
4 MYL 2018 0.35 11433900000 4001600000 Drug Manufacturer~
5 MRK 2018 0.681 42294000000 28785000000 Drug Manufacturer~
6 LLY 2018 0.738 24555700000 18125700000 Drug Manufacturer~
7 JNJ 2018 0.668 81581000000 54490000000 Drug Manufacturer~
8 GILD 2018 0.781 22127000000 17274000000 Drug Manufacturer~
9 BMY 2018 0.71 22561000000 16014000000 Drug Manufacturer~
10 BIIB 2018 0.865 13452900000 11636600000 Drug Manufacturer~
11 AMGN 2018 0.827 23747000000 19646000000 Drug Manufacturer~
12 AGN 2018 0.861 15787400000 13596000000 Drug Manufacturer~
13 ABBV 2018 0.764 32753000000 25035000000 Drug Manufacturer~
Start with drug_cos
Extract observations for the ticker JNJ from drug_cos
Assign output to the variable drug_cos_subset
drug_cos_subset
drug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 JNJ John~ New Jer~ 0.247 0.687 0.149 0.199 0.161
2 JNJ John~ New Jer~ 0.272 0.678 0.161 0.218 0.173
3 JNJ John~ New Jer~ 0.281 0.687 0.194 0.224 0.197
4 JNJ John~ New Jer~ 0.336 0.694 0.22 0.284 0.217
5 JNJ John~ New Jer~ 0.335 0.693 0.22 0.282 0.219
6 JNJ John~ New Jer~ 0.338 0.697 0.23 0.286 0.229
7 JNJ John~ New Jer~ 0.317 0.667 0.017 0.243 0.019
8 JNJ John~ New Jer~ 0.318 0.668 0.188 0.233 0.244
# ... with 1 more variable: year <dbl>
Use left_join to combine the rows and columns of drug_cos_subset
with the columns of health_cos
Assign the output to combo_df
combo_df
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 JNJ John~ New Jer~ 0.247 0.687 0.149 0.199 0.161
2 JNJ John~ New Jer~ 0.272 0.678 0.161 0.218 0.173
3 JNJ John~ New Jer~ 0.281 0.687 0.194 0.224 0.197
4 JNJ John~ New Jer~ 0.336 0.694 0.22 0.284 0.217
5 JNJ John~ New Jer~ 0.335 0.693 0.22 0.282 0.219
6 JNJ John~ New Jer~ 0.338 0.697 0.23 0.286 0.229
7 JNJ John~ New Jer~ 0.317 0.667 0.017 0.243 0.019
8 JNJ John~ New Jer~ 0.318 0.668 0.188 0.233 0.244
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
Note: the variables ticker
, name
, location
and industry
are the same for all the observations
Assign the company name to co_name
co_location
co_industry
groupPut the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Johnson & Johnson
is located in New Jersey; U.S.A
and is a member of the Drug Manufacturers
industry group.
Start with combo_df
Select variables (in this order): year
, grossmargin
, netmargin
, revenue
, gp
, netincome
combo_df_subset
combo_df_subset
combo_df_subset
# A tibble: 8 x 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000 9672000000
2 2012 0.678 0.161 67224000000 45566000000 10853000000
3 2013 0.687 0.194 71312000000 48970000000 13831000000
4 2014 0.694 0.22 74331000000 51585000000 16323000000
5 2015 0.693 0.22 70074000000 48538000000 15409000000
6 2016 0.697 0.23 71890000000 50101000000 16540000000
7 2017 0.667 0.017 76450000000 51011000000 1300000000
8 2018 0.668 0.188 81581000000 54490000000 15297000000
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000 9672000000
2 2012 0.678 0.161 67224000000 45566000000 10853000000
3 2013 0.687 0.194 71312000000 48970000000 13831000000
4 2014 0.694 0.22 74331000000 51585000000 16323000000
5 2015 0.693 0.22 70074000000 48538000000 15409000000
6 2016 0.697 0.23 71890000000 50101000000 16540000000
7 2017 0.667 0.017 76450000000 51011000000 1300000000
8 2018 0.668 0.188 81581000000 54490000000 15297000000
# ... with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
Create the variable netmargin_check
to compare with the variable netmargin
. They should be equal.
Create the variable close_enough
to check that the absolute value of the difference between netmargin_check
and netmargin
is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome / revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000 9672000000
2 2012 0.678 0.161 67224000000 45566000000 10853000000
3 2013 0.687 0.194 71312000000 48970000000 13831000000
4 2014 0.694 0.22 74331000000 51585000000 16323000000
5 2015 0.693 0.22 70074000000 48538000000 15409000000
6 2016 0.697 0.23 71890000000 50101000000 16540000000
7 2017 0.667 0.017 76450000000 51011000000 1300000000
8 2018 0.668 0.188 81581000000 54490000000 15297000000
# ... with 2 more variables: netmargin_check <dbl>,
# close_enough <lgl>
-Fill in the blanks
-Put the command you use in the Rchunks in the Rmd file for this quiz
-Use the health_cos data
-For each industry calculate
health_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent = mean(netincome / revenue) * 100 ,
median_netmargin_percent = median(netincome / revenue) * 100 ,
min_netmargin_percent = min(netincome / revenue) * 100 ,
max_netmargin_percent = max(netincome / revenue) * 100)
# A tibble: 9 x 5
industry mean_netmargin_~ median_netmargi~ min_netmargin_p~
<chr> <dbl> <dbl> <dbl>
1 Biotechnology -4.66 7.62 -197.
2 Diagnostics & Re~ 13.1 12.3 0.399
3 Drug Manufacture~ 19.4 19.5 -34.9
4 Drug Manufacture~ 5.88 9.01 -76.0
5 Healthcare Plans 3.28 3.37 -0.305
6 Medical Care Fac~ 6.10 6.46 1.40
7 Medical Devices 12.4 14.3 -56.1
8 Medical Distribu~ 1.70 1.03 -0.102
9 Medical Instrume~ 12.3 14.0 -47.1
# ... with 1 more variable: max_netmargin_percent <dbl>
Fill in the blanks
Use the health_cos
data
Extract observations for the ticker SEE QUIZ from health_cos
and assign to the variable health_cos_subset
health_cos_subset
health_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 AMGN Amgen I~ 1.56e10 1.29e10 3.17e9 3.68e9 4.89e10 29842000000
2 AMGN Amgen I~ 1.73e10 1.41e10 3.38e9 4.34e9 5.43e10 35238000000
3 AMGN Amgen I~ 1.87e10 1.53e10 4.08e9 5.08e9 6.61e10 44029000000
4 AMGN Amgen I~ 2.01e10 1.56e10 4.30e9 5.16e9 6.90e10 43231000000
5 AMGN Amgen I~ 2.17e10 1.74e10 4.07e9 6.94e9 7.14e10 43366000000
6 AMGN Amgen I~ 2.30e10 1.88e10 3.84e9 7.72e9 7.76e10 47751000000
7 AMGN Amgen I~ 2.28e10 1.88e10 3.56e9 1.98e9 8.00e10 54713000000
8 AMGN Amgen I~ 2.37e10 1.96e10 3.74e9 8.39e9 6.64e10 53916000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
In the console, type ?distinct
. Go to the help pane to see what distinct does
In the console, type ?pull
. Go to the help pane to see what pull
does
Run the code below
co_name
You can take output from your code and include it in your text.
The name of the company with ticker AMGN is Amgen Inc
In following chuck
Assign the company’s industry group to the variable co_industry
This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Amgen Inc is a member of the Drug Manufacturers - General group.
Steps 7-11
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Drug~
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, ~
use ggplot to initialize the chart
data is df
the variable industry is mapped to the x-axis *reorder it based the value of med_rnd_rev
the variable med_rnd_rev is mapped to the y-axis
add a bar chart using geom_col
use scale_y_continuous to label the y-axis with percent
use coord_flip() to flip the coordinates
use labs to add title, subtitle and remove x and y-axes
use theme_ipsum() from the hrbrthemes package to improve the theme
ggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev ),
y = med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL) +
theme_ipsum()
df %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("infographic")